Теория:Сетевая модель OSI. Модель OSI – это просто! Модель osi определение




Разработана эта модель была в далеком 1984 году Международной организацией по стандартизации (International Standard Organization, ISO), и в оригинале называется Open Systems Interconnection, OSI.
Модель взаимодействия открытых систем (по факту - модель сетевого взаимодействия) является стандартом для проектирования сетевых коммуникаций и предполагает уровневый подход к построению сетей.
Каждый уровень модели обслуживает различные этапы процесса взаимодействия. Посредством деления на уровни сетевая модель OSI упрощает совместную работу оборудования и программного обеспечения. Модель OSI разделяет сетевые функции на семь уровней: прикладной, уровень представления, сессионный, транспортный, сетевой, канальный и физический.


  • Физический уровень (Physical layer) - определяет способ физического соединения компьютеров в сети. Функциями средств, относящихся к данному уровню, являются побитовое преобразование цифровых данных в сигналы, передаваемые по физической среде (например, по кабелю), а также собственно передача сигналов.
  • Канальный уровень (Data Link layer) - отвечает за организацию передачи данных между абонентами через физический уровень, поэтому на данном уровне предусмотрены средства адресации, позволяющие однозначно идентифицировать отправителя и получателя во всем множестве абонентов, подключенных к обще линии связи. В функции данного уровня также входит упорядочивание передачи с целью параллельного использования одной линии связи несколькими парами абонентов. Кроме того, средства канального уровня обеспечивают проверку ошибок, которые могут возникать при передаче данных физическим уровнем.
  • Сетевой уровень (Network layer) - обеспечивает доставку данных между компьютерами сети, представляющей собой объединение различных физических сетей. Данный уровень предполагает наличие средств логической адресации, позволяющих однозначно идентифицировать компьютер в объединенной сети. Одной из главных функций, выполняемых средствами данного уровня, является целенаправленная передача данных конкретному получателю.
  • Транспортный уровень (Transport layer) - реализует передачу данных между двумя программами, функционирующими на разных компьютерах, обеспечивая при этом отсутствие потерь и дублирования информации, которые могут возникать в результате ошибок передачи нижних уровней. В случае, если данные, передаваемые через транспортный уровень, подвергаются фрагментации, то средства данного уровня гарантируют сборку фрагментов в правильном порядке.
  • Сессионный (или сеансовый) уровень (Session layer) - позволяет двум программам поддерживать продолжительное взаимодействие по сети, называемое сессией (session) или сеансом. Этот уровень управляет установлением сеанса, обменом информацией и завершением сеанса. Он также отвечает за идентификацию, позволяя тем самым только определенным абонентам принимать участие в сеансе, и обеспечивает работу служб безопасности с целью упорядочивания доступа к информации сессии.
  • Уровень представления (Presentation layer) - осуществляет промежуточное преобразование данных исходящего сообщения в общий формат, который предусмотрен средствами нижних уровней, а также обратное преобразование входящих данных из общего формата в формат, понятный получающей программе.
  • Прикладной уровень (Application layer) - предоставляет высокоуровневые функции сетевого взаимодействия, такие, как передача файлов, отправка сообщений по электронной почте и т.п.

Модель OSI простым языком


Модель OSI – это аббревиатура от английского Open System Interconnection, то есть модель взаимодействия открытых систем. Под открытыми системами можно понимать сетевое оборудование (компьютеры с сетевыми картами, коммутаторы, маршрутизаторы).
Сетевая модель OSI представляет собой схему работы (или план действий по обмену данными) для сетевых устройств. Также OSI играет роль в создании новых сетевых протоколов, так как служит эталоном взаимодействия.
OSI состоит из 7 блоков (уровней). Каждый блок выполняет свою уникальную роль в сетевом взаимодействии различных сетевых устройств.
7 уровней модели OSI: 1 - Физический, 2 - Канальный, 3 - Сетевой, 4 - Транспортный, 5 - Сеансовый, 6 - Представления, 7 - Приложений.
На каждом уровне модели есть собственный набор сетевых протоколов (стандартов передачи данных), с помощью которых устройства в сети обмениваются данными.
Запомните, чем сложнее сетевое устройство, тем больше возможностей оно предоставляет, но и больше уровней занимает, и как следствие – медленней работает.

Сетевые модели. Часть 1. OSI.


Определенно начинать лучше с теории, и затем, плавно, переходить к практике. Поэтому сначала рассмотрим сетевую модель (теоретическая модель), а затем приоткроем занавес на то, как теоретическая сетевая модель вписывается в сетевую инфраструктуру (на сетевое оборудование, компьютеры пользователей, кабели, радиоволны и т.д.).
Итак, сетевая модель - это модель взаимодействия сетевых протоколов. А протоколы в свою очередь, это стандарты, которые определяют каким образом, будут обмениваться данными различные программы.
Поясню на примере: открывая любую страничку в интернете, сервер (где находится открываемая страничка) пересылает в Ваш браузер данные (гипертекстовый документ) по протоколу HTTP. Благодаря протоколу HTTP Ваш браузер, получая данные с сервера, знает, как их требуется обработать, и успешно обрабатывает их, показывая Вам запрашиваемую страничку.
Если Вы еще не в курсе что из себя представляет страничка в интернете, то объясню в двух словах: любой текст на веб-страничке заключен в специальные теги, которые указывают браузеру какой размер текста использовать, его цвет, расположение на странице (слева, справа или по центру). Это касается не только текста, но и картинок, форм, активных элементов и вообще всего контента, т.е. того, что есть на страничке. Браузер, обнаруживая теги, действует согласно их предписанию, и показывает Вам обработанные данные, которые заключены в эти теги. Вы и сами можете увидеть теги этой странички (и этот текст между тегами), для этого зайдите в меню вашего браузера и выберите - просмотр исходного кода.
Не будем сильно отвлекаться, "Сетевая модель" нужная тема для тех, кто хочет стать специалистом. Эта статья состоит из 3х частей и для Вас, Я постарался написать не скучно, понятливо и коротко. Для получения подробностей, или получения дополнительного разъяснения отпишитесь в комментариях внизу страницы, и я непременно помогу Вам.
Мы, как и в Сетевой Академии Cisco рассмотрим две сетевые модели: модель OSI и модель TCP/IP (иногда её называют DOD), а заодно и сравним их.

Эталонная сетевая модель OSI


OSI расшифровывается как Open System Interconnection. На русском языке это звучит следующим образом: Сетевая модель взаимодействия открытых систем (эталонная модель). Эту модель можно смело назвать стандартом. Именно этой модели придерживаются производители сетевых устройств, когда разрабатывают новые продукты.
Сетевая модель OSI состоит из 7 уровней, причем принято начинать отсчёт с нижнего.
Перечислим их:
7. Прикладной уровень (application layer)
6. Представительский уровень или уровень представления (presentation layer)
5. Сеансовый уровень (session layer)
4. Транспортный уровень (transport layer)
3. Сетевой уровень (network layer)
2. Канальный уровень (data link layer)
1. Физический уровень (physical layer)

Как говорилось выше, сетевая модель – это модель взаимодействия сетевых протоколов (стандартов), вот на каждом уровне и присутствуют свои протоколы. Перечислять их скучный процесс (да и не к чему), поэтому лучше разберем все на примере, ведь усваиваемость материала на примерах гораздо выше;)

Прикладной уровень


Прикладной уровень или уровень приложений(application layer) – это самый верхний уровень модели. Он осуществляет связь пользовательских приложений с сетью. Эти приложения нам всем знакомы: просмотр веб-страниц (HTTP), передача и приём почты (SMTP, POP3), приём и получение файлов (FTP, TFTP), удаленный доступ (Telnet) и т.д.

Представительский уровень


Представительский уровень или уровень представления данных (presentation layer) – он преобразует данные в соответствующий формат. На примере понять проще: те картинки (все изображения) которые вы видите на экране, передаются при пересылке файла в виде маленьких порций единиц и ноликов (битов). Так вот, когда Вы отправляете своему другу фотографию по электронной почте, протокол Прикладного уровня SMTP отправляет фотографию на нижний уровень, т.е. на уровень Представления. Где Ваша фотка преобразуется в удобный вид данных для более низких уровней, например в биты (единицы и нолики).
Именно таким же образом, когда Ваш друг начнет получать Ваше фото, ему оно будет поступать в виде все тех же единиц и нулей, и именно уровень Представления преобразует биты в полноценное фото, например JPEG.
Вот так и работает этот уровень с протоколами (стандартами) изображений (JPEG, GIF, PNG, TIFF), кодировок (ASCII, EBDIC), музыки и видео (MPEG) и т.д.

Сеансовый уровень


Сеансовый уровень или уровень сессий(session layer) – как видно из названия, он организует сеанс связи между компьютерами. Хорошим примером будут служить аудио и видеоконференции, на этом уровне устанавливается, каким кодеком будет кодироваться сигнал, причем этот кодек должен присутствовать на обеих машинах. Еще примером может служить протокол SMPP (Short message peer-to-peer protocol), с помощью него отправляются хорошо известные нам СМСки и USSD запросы. И последний пример: PAP (Password Authentication Protocol) – это старенький протокол для отправки имени пользователя и пароля на сервер без шифрования.
Больше про сеансовый уровень ничего не скажу, иначе углубимся в скучные особенности протоколов. А если они (особенности) Вас интересуют, пишите письма мне или оставляйте сообщение в комментариях с просьбой раскрыть тему более подробно, и новая статья не заставит себя долго ждать;)

Транспортный уровень


Транспортный уровень (transport layer) – этот уровень обеспечивает надёжность передачи данных от отправителя к получателю. На самом деле всё очень просто, например вы общаетесь с помощью веб-камеры со своим другом или преподавателем. Нужна ли здесь надежная доставка каждого бита переданного изображения? Конечно нет, если потеряется несколько битов из потокового видео Вы даже этого не заметите, даже картинка не изменится (м.б. изменится цвет одного пикселя из 900000 пикселей, который промелькнет со скоростью 24 кадра в секунду).
А теперь приведем такой пример: Вам друг пересылает (например, через почту) в архиве важную информацию или программу. Вы скачиваете себе на компьютер этот архив. Вот здесь надёжность нужна 100%, т.к. если пару бит при закачке архива потеряются – Вы не сможете затем его разархивировать, т.е. извлечь необходимые данные. Или представьте себе отправку пароля на сервер, и в пути один бит потерялся – пароль уже потеряет свой вид и значение изменится.
Таким образом, когда мы смотрим видеоролики в интернете, иногда мы видим некоторые артефакты, задержки, шумы и т.п. А когда мы читаем текст с веб-страницы – потеря (или скжение) букв не допустима, и когда скачиваем программы – тоже все проходит без ошибок.
На этом уровне я выделю два протокола: UDP и TCP. UDP протокол (User Datagram Protocol) передает данные без установления соединения, не подтверждает доставку данных и не делает повторы. TCP протокол (Transmission Control Protocol), который перед передачей устанавливает соединение, подтверждает доставку данных, при необходимости делает повтор, гарантирует целостность и правильную последовательность загружаемых данных.
Следовательно, для музыки, видео, видеоконференций и звонков используем UDP (передаем данные без проверки и без задержек), а для текста, программ, паролей, архивов и т.п. – TCP (передача данных с подтверждением о получении, затрачивается больше времени).

Сетевой уровень


Сетевой уровень (network layer) – этот уровень определяет путь, по которому данные будут переданы. И, между прочим, это третий уровень Сетевой модели OSI, а ведь существуют такие устройства, которые как раз и называют устройствами третьего уровня – маршрутизаторы.
Все мы слышали об IP-адресе, вот это и осуществляет протокол IP (Internet Protocol). IP-адрес – это логический адрес в сети.
На этом уровне достаточно много протоколов и все эти протоколы мы разберем более подробно позже, в отдельных статьях и на примерах. Сейчас же только перечислю несколько популярных.
Как об IP-адресе все слышали и о команде ping – это работает протокол ICMP.
Те самые маршрутизаторы (с которыми мы и будет работать в дальнейшем) используют протоколы этого уровня для маршрутизации пакетов (RIP, EIGRP, OSPF).
Вся вторая часть курса CCNA (Exploration 2) о маршрутизации.

Канальный уровень


Канальный уровень (data link layer) – он нам нужен для взаимодействия сетей на физическом уровне. Наверное, все слышали о MAC-адресе, вот он является физическим адресом. Устройства канального уровня – коммутаторы, концентраторы и т.п.
IEEE (Institute of Electrical and Electronics Engineers - Институт инженеров по электротехнике и электронике) определяет канальный уровень двумя подуровнями: LLC и MAC.
LLC – управление логическим каналом (Logical Link Control), создан для взаимодействия с верхним уровнем.
MAC – управление доступом к передающей среде (Media Access Control), создан для взаимодействия с нижним уровнем.
Объясню на примере: в Вашем компьютере (ноутбуке, коммуникаторе) имеется сетевая карта (или какой-то другой адаптер), так вот для взаимодействия с ней (с картой) существует драйвер. Драйвер – это некоторая программа - верхний подуровень канального уровня, через которую как раз и можно связаться с нижними уровнями, а точнее с микропроцессором (железо) – нижний подуровень канального уровня.
Типичных представителей на этом уровне много. PPP (Point-to-Point) – это протокол для связи двух компьютеров напрямую. FDDI (Fiber Distributed Data Interface) – стандарт передаёт данные на расстояние до 200 километров. CDP (Cisco Discovery Protocol) – это проприетарный (собственный) протокол принадлежащий компании Cisco Systems, с помощью него можно обнаружить соседние устройства и получить информацию об этих устройствах.
Вся третья часть курса CCNA (Exploration 3) об устройствах второго уровня.

Физический уровень


Физический уровень (physical layer) – самый нижний уровень, непосредственно осуществляющий передачу потока данных. Протоколы нам всем хорошо известны: Bluetooth, IRDA (Инфракрасная связь), медные провода (витая пара, телефонная линия), Wi-Fi, и т.д.
Подробности и спецификации ждите в следующих статьях и в курсе CCNA. Вся первая часть курса CCNA (Exploration 1) посвящена модели OSI.

Заключение


Вот мы и разобрали сетевую модель OSI. В следующей части приступим к Сетевой модели TCP/IP, она меньше и протоколы те же. Для успешной сдачи тестов CCNA надо провести сравнение и выявить отличия, что и будет сделано.

После недолгих размышлений решил поместить сюда статью с сайта Сетевых заморочек . Чтобы всё лежало в одном месте.

И снова здравствуйте дорогие друзья, сегодня мы с вами разберемся в том, что же такое сетевая модель OSI, зачем она, собственно говоря, предназначена.

Как вы уже наверное понимаете, современные сети устроены очень и очень сложно, в них протекает множество различных процессов, выполняются сотни действий. Для того чтобы упростить процесс описания данного многообразия функций сети (а что еще более важно упростить процесс дальнейшей разработки данных функций) были предприняты попытке их структурирования. В результате структурирования все функции, выполняемые компьютерной сетью, разделяются на несколько уровней, каждый из которых отвечает только за определенный, узкоспециализированый круг задач. Здесь сетевую модель можно сравнить со структурой компании. Компания разделена на отделы. Каждый отдел выполняет свои функции, но во время работы контактирует с другими отделами.


Разделение функций с помощью сетевой модели


Сетевая модель OSI разработана таким образом, чтобы вышестоящие уровни сетевой модели использовали нижестоящие уровни сетевой модели, для передачи своей информации. Правила, с помощью которых общаются уровни модели, называются сетевыми протоколами. Сетевой протокол определенного уровня модели может общаться либо с протоколами своего уровня, либо с протоколами соседних уровней. Здесь опять же можно провести аналогию с работой компании. В компании всегда есть четко установленная иерархия, хотя и не такая строгая как в сетевой модели. Работники одной ступени иерархии выполняют поручения, полученные от работников более высокого уровня иерархии.


Взаимодействие между уровнями сетевой модели OSI


Каждое устройство, работающее в сети, можно представить в виде системы работающей на соответствующих уровнях модели OSI. Причем данное устройство может использовать в своей работе, как все уровни модели OSI, так и только некоторые нижние ее уровни. Обычно когда говорят, что устройство работает на некотором уровне модели, то подразумевают, что оно работает на данном уровне сетевой модели и на всех лежащих ниже уровнях.


Работа не некоторых уровнях сетевой модели OSI


Когда два различных устройства сети общаются между собой, они используют протоколы одних и тех же уровней сетевой модели, при этом в процесс взаимодействия вовлекается как протоколы уровня на котором непосредственно происходит взаимодействие, так и необходимые протоколы всех нижележащих уровней, так как они используются для передачи данных, полученных от верхних уровней.


Общение двух систем с позиции модели OSI


При передачи информации от верхнего уровня сетевой модели к нижнему уровню сетевой модели, к данной полезной информации добавляется некоторая служебная информация, называемая заголовком (на 2 уровне добавляется не только заголовок, но еще и концевик). Данный процесс добавления служебной информации называется инкапсуляцией. При приеме (передачи информации от нижнего уровня к верхнему) происходит отделение данной служебной информации и получение исходных данных. Такой процесс называется деинкапсуляцией. По своей сути этот процесс очень похож на процесс отправки письма по почте. Представьте, что вы хотите отправить письмо своему другу. Вы пишите письмо – это полезная информация. Отправляя ее по почте, вы упаковываете ее в конверт, надписывая на нем адрес получателя, то есть добавляете к полезной информации некоторый заголовок. По сути это и есть инкапсуляция. Получая ваше письмо, ваш друг его деинкапсулирует – то есть разрывает конверт и достает из него полезную информацию – ваше письмо.


Демонстрация принципа инкапсуляции


Модель OSI подразделяет все функции, выполняемые при взаимодействии систем на 7 уровней: Физический(Physical) - 1, Канальный(Data link) -2, Сетевой(network) – 3, Транспортный(transport) – 4, Сеансовый(Session) -5, Представительский(Presentation) -6 и Прикладной (Application) - 7.


Уровни модели взаимодействия открытых систем


Кратенько рассмотрим назначение каждого из уровней модели взаимодействия открытых систем.

Прикладной уровень является точкой, через которую приложения общаются с сетью (точка входа в модель OSI). С помощью данного уровня модели OSI выполняется следующие задачи: управление сетью, управление занятостью системы, управление передачей файлов, идентификация пользователей по их паролям. Примерами протоколов данного уровня являются: HTTP, SMTP, RDP и д.р. Очень часто протоколы прикладного уровня выполняют одновременно функции протоколов представительского и сеансового уровней.


Данный уровень отвечает за формат представления данных. Грубо говоря, он преобразует данные полученные от уровня приложений к формату пригодному для передачи по сети (ну и соответственно выполняет обратную операцию преобразуя информацию, полученную из сети, к формату пригодному для обработки приложениями).


На данном уровне происходит установление, поддержание и управление сеансом связи между двумя системами. Именно данный уровень отвечает за поддержание связи между системами на весь промежуток времени в течение которого происходит их взаимодействие.


Протоколы данного уровня сетевой модели OSI отвечают за передачу данных от одной системы другой. На данном уровне большие блоки данных разделяются на более мелкие блоки, пригодные для обработки сетевым уровнем (очень мелкие блоки данных объединяются в более крупные), данные блоки соответствующим образом маркируются для их последующего восстановления на принимающей стороне. Так же при использовании соответствующих протоколов данный уровень способен обеспечить контроль доставки пакетов сетевого уровня. Блок данных, которым оперируют данный уровень обычно называется сегментом. Примерами протоколов данного уровня являются: TCP, UDP, SPX, ATP и д.р.


Данный уровень отвечает за маршрутизацию (определение оптимальных маршрутов от одной системы до другой) блоков данных данного уровня. Блок данных этого уровня обычно называется пакетом. Так же данный уровень отвечает за логическую адресацию систем (те самые IP адреса), на основе которой как раз и происходит маршрутизация. К протоколам данного уровня можно отнести: IP, IPX и др, к устройствам работающим на данном уровне – маршрутизаторы.


Данный уровень отвечает за физическую адресацию устройств сети (MAC адреса), управлением доступа к среде, а также коррекцией ошибок допущенных физическим уровнем. Блок данных, используемый на канальном уровне принято называть фреймом. К данному уровню относятся следующие устройства: коммутаторы (не все), мосты и д.р. Типичной технологией использующей данный уровень является Ethernet.


Осуществляет передачу оптических или электрических импульсов по выбранной среде передачи. К устройствам данного уровня можно отнести всевозможные повторители и концентраторы.


Модель OSI сама по себе не является практической реализацией, она лишь предполагает некоторый набор правил по взаимодействию компонентов системы. Практическим примером реализации стека сетевых протоколов является стек протоколов TCP/IP (а так же другие менее распространенные стеки протоколов).

Александр Горячев, Алексей Нисковский

Для того чтобы серверы и клиенты сети могли общаться, они должны работать с использованием одного протокола обмена информацией, то есть должны «говорить» на одном языке. Протокол определяет набор правил для организации обмена информацией на всех уровнях взаимодействия сетевых объектов.

Существует эталонная модель взаимодействия открытых систем (Open System Interconnection Reference Model), часто называемая моделью OSI. Эта модель разработана Международной организацией по стандартизации (International Organization for Standardization, ISO). Модель OSI описывает схему взаимодействия сетевых объектов, определяет перечень задач и правила передачи данных. Она включает в себя семь уровней: физический (Physical - 1), канальный (Data-Link - 2), сетевой (Network - 3), транспортный (Transport - 4), сеансовый (Session - 5), представления данных (Presentation - 6) и прикладной (Application - 7). Считается, что два компьютера могут взаимодействовать друг с другом на конкретном уровне модели OSI, если их программное обеспечение, реализующее сетевые функции этого уровня, одинаково интерпретирует одни и те же данные. В этом случае устанавливается прямое взаимодействие между двумя компьютерами, называемое «точка-точка».

Реализации модели OSI протоколами называются стеками (наборами) протоколов. В рамках одного конкретного протокола невозможно реализовать все функции модели OSI. Обычно задачи конкретного уровня реализуются одним или несколькими протоколами. На одном компьютере должны работать протоколы из одного стека. При этом компьютер одновременно может использовать несколько стеков протоколов.

Рассмотрим задачи, решаемые на каждом из уровней модели OSI.

Физический уровень

На этом уровне модели OSI определяются следующие характеристики сетевых компонентов: типы соединений сред передачи данных, физические топологии сети, способы передачи данных (с цифровым или аналоговым кодированием сигналов), виды синхронизации передаваемых данных, разделение каналов связи с использованием частотного и временного мультиплексирования.

Реализации протоколов физического уровня модели OSI координируют правила передачи битов.

Физический уровень не включает описание среды передачи. Однако реализации протоколов физического уровня специфичны для конкретной среды передачи. С физическим уровнем обычно ассоциируется подключение следующего сетевого оборудования:

  • концентраторов, хабов и повторителей, регенерирующих электрические сигналы;
  • соединительных разъемов среды передачи, обеспечивающих механический интерфейс для связи устройства со средой передачи;
  • модемов и различных преобразующих устройств, выполняющих цифровые и аналоговые преобразования.

Этот уровень модели определяет физические топологии в корпоративной сети, которые строятся с использованием базового набора стандартных топологий.

Первой в базовом наборе является шинная (bus) топология. В этом случае все сетевые устройства и компьютеры подключаются к общей шине передачи данных, которая чаще всего формируется с использованием коаксиального кабеля. Кабель, формирующий общую шину, называется магистральным (backbone). От каждого из устройств, подключенных к шине, сигнал передается в обе стороны. Для удаления сигнала из кабеля на концах шины должны использоваться специальные прерыватели (terminator). Механическое повреждение магистрали сказывается на работе всех устройств, подключенных к ней.

Кольцевая топология предусматривает соединение всех сетевых устройств и компьютеров в физическое кольцо (ring). В этой топологии информация всегда передается по кольцу в одну сторону - от станции к станции. Каждое сетевое устройство должно иметь приемник информации на входном кабеле и передатчик на выходном. Механическое повреждение среды передачи информации в одинарном кольце повлияет на работу всех устройств, однако сети, построенные с использованием двойного кольца, как правило, имеют запас по отказоустойчивости и функции самовосстановления. В сетях, построенных на двойном кольце, одна и та же информация передается по кольцу в обе стороны. В случае повреждения кабеля кольцо будет продолжать работать в режиме одинарного кольца на двойной длине (функции самовосстановления определяются используемыми аппаратными средствами).

Следующей топологией является звездообразная топология, или звезда (star). Она предусматривает наличие центрального устройства, к которому лучами (отдельными кабелями) подключаются другие сетевые устройства и компьютеры. Сети, построенные на звездообразной топологии, имеют одиночную точку отказа. Этой точкой является центральное устройство. В случае выхода из строя центрального устройства все остальные участники сети не смогут обмениваться информацией между собой, поскольку весь обмен осуществлялся только через центральное устройство. В зависимости от типа центрального устройства принимаемый с одного входа сигнал может транслироваться (с усилением или без) на все выходы либо на конкретный выход, к которому подключено устройство - получатель информации.

Полносвязанная (mesh) топология обладает высокой отказоустойчивостью. При построении сетей с подобной топологией каждое из сетевых устройств или компьютеров соединяется с каждым другим компонентом сети. Эта топология обладает избыточностью, за счет чего кажется непрактичной. Действительно, в малых сетях эта топология применяется редко, однако в больших корпоративных сетях полносвязанная топология может использоваться для соединения наиболее важных узлов.

Рассмотренные топологии чаще всего строятся с применением кабельных соединений.

Существует еще одна топология, использующая беспроводные соединения, - сотовая (cellular). В ней сетевые устройства и компьютеры объединяются в зоны - ячейки (cell), взаимодействуя только с приемо-передающим устройством ячейки. Передача информации между ячейками осуществляется приемо-передающими устройствами.

Канальный уровень

Этот уровень определяет логическую топологию сети, правила получения доступа к среде передачи данных, решает вопросы, связанные с адресацией физических устройств в рамках логической сети и управлением передачей информации (синхронизация передачи и сервис соединений) между сетевыми устройствами.

Протоколами канального уровня определяются:

  • правила организации битов физического уровня (двоичные единицы и нули) в логические группы информации, называемые фреймами (frame), или кадрами. Фрейм является единицей данных канального уровня, состоящей из непрерывной последовательности сгруппированных битов, имеющей заголовок и окончание;
  • правила обнаружения (и иногда исправления) ошибок при передаче;
  • правила управления потоками данных (для устройств, работающих на этом уровне модели OSI, например, мостов);
  • правила идентификации компьютеров в сети по их физическим адресам.

Подобно большинству других уровней канальный уровень добавляет собственную управляющую информацию в начало пакета данных. Эта информация может включать адрес источника и адрес назначения (физический или аппаратный), информацию о длине фрейма и индикацию активных протоколов верхнего уровня.

С канальным уровнем обычно связаны следующие сетевые соединительные устройства:

  • мосты;
  • интеллектуальные концентраторы;
  • коммутаторы;
  • сетевые интерфейсные платы (сетевые интерфейсные карты, адаптеры и т.д.).

Функции канального уровня подразделяются на два подуровня (табл. 1):

  • управление доступом к среде передачи (Media Access Control, MAC);
  • управление логическим соединением (Logical Link Control, LLC).

Подуровень MAC определяет такие элементы канального уровня, как логическая топология сети, метод доступа к среде передачи информации и правила физической адресации между сетевыми объектами.

Аббревиатура MAC также используется при определении физического адреса сетевого устройства: физический адрес устройства (который определяется внутри сетевого устройства или сетевой карты на этапе производства) часто называют MAC-адресом этого устройства. Для большого количества сетевых устройств, особенно сетевых карт, существует возможность программно изменить MAC-адрес. При этом необходимо помнить, что канальный уровень модели OSI накладывает ограничения на использование MAC-адресов: в одной физической сети (сегменте большей по размеру сети) не может быть двух или более устройств, использующих одинаковые MAC-адреса. Для определения физического адреса сетевого объекта может быть использовано понятие «адрес узла» (node address). Адрес узла чаще всего совпадает с MAC-адресом или определяется логически при программном переназначении адреса.

Подуровень LLC определяет правила синхронизации передачи и сервиса соединений. Этот подуровень канального уровня тесно взаимодействует с сетевым уровнем модели OSI и отвечает за надежность физических (с использованием MAC-адресов) соединений. Логическая топология (logical topology) сети определяет способ и правила (последовательность) передачи данных между компьютерами в сети. Сетевые объекты передают данные в зависимости от логической топологии сети. Физическая топология определяет физический путь данных; при этом в некоторых случаях физическая топология не отражает способ функционирования сети. Фактический путь данных определяется логической топологией. Для передачи данных по логическому пути, который может отличаться от пути в физической среде, используются сетевые устройства подключения и схемы доступа к среде передачи. Хороший пример различий между физической и логической топологиями - сеть Token Ring фирмы IBM. В локальных сетях Token Ring часто используется медный кабель, который прокладывается в звездообразную схему с центральным разветвителем (хабом). В отличие от нормальной звездообразной топологии хаб не пересылает входящие сигналы всем другим подключенным устройствам. Внутренняя схема хаба последовательно отправляет каждый входящий сигнал следующему устройству в заранее предопределенном логическом кольце, то есть по круговой схеме. Физической топологией этой сети является звезда, а логической - кольцо.

Еще одним примером различий между физической и логической топологиями может служить сеть Ethernet. Физическая сеть может быть построена с использованием медных кабелей и центрального хаба. Образуется физическая сеть, выполненная по топологии звезды. Однако технология Ethernet предусматривает передачу информации от одного компьютера ко всем остальным, находящимся в сети. Хаб должен ретранслировать принятый с одного своего порта сигнал на все остальные порты. Образована логическая сеть с шинной топологией.

Чтобы определить логическую топологию сети, необходимо понять, как в ней принимаются сигналы:

  • в логических шинных топологиях каждый сигнал принимается всеми устройствами;
  • в логических кольцевых топологиях каждое устройство получает только те сигналы, которые были посланы конкретно ему.

Также важно знать, каким образом сетевые устройства получают доступ к среде передачи информации.

Доступ к среде передачи

Логические топологии используют специальные правила, управляющие разрешением на передачу информации другим сетевым объектам. Процесс управления контролирует доступ к среде передачи данных. Рассмотрим сеть, в которой всем устройствам позволено функционировать безо всяких правил получения доступа к среде передачи. Все устройства в такой сети передают информацию по мере готовности данных; эти передачи могут иногда накладываться во времени. В результате наложения сигналы искажаются, происходит потеря передаваемых данных. Такая ситуация называется коллизией (collision). Коллизии не позволяют организовать надежную и эффективную передачу информации между сетевыми объектами.

Коллизии в сети распространяются на физические сегменты сети, к которым подключаются сетевые объекты. Такие соединения образуют единое пространство коллизий (collision space), в котором влияние коллизий распространяется на всех. Для уменьшения размеров пространств коллизий путем сегментации физической сети можно использовать мосты и другие сетевые устройства, обладающие функциями фильтрации трафика на канальном уровне.

Сеть не может нормально работать до тех пор, пока все сетевые объекты не смогут контролировать коллизии, управлять ими или устранять их влияние. В сетях необходим некоторый метод снижения числа коллизий, интерференции (наложения) одновременных сигналов.

Существуют стандартные методы доступа к среде передачи, описывающие правила, по которым осуществляется управление разрешением на передачу информации для сетевых устройств: состязание, передача маркера и опрос.

Перед тем как выбрать протокол, в котором реализован один из этих методов доступа к среде передачи данных, следует обратить особое внимание на следующие факторы:

  • характер передач - непрерывный или импульсный;
  • количество передач данных;
  • необходимость передачи данных в строго определенные интервалы времени;
  • количество активных устройств в сети.

Каждый из этих факторов в комбинации с преимуществами и недостатками поможет определить, какой из методов доступа к среде передачи является наиболее подходящим.

Состязание. Системы на основе состязания (конкуренции) предполагают, что доступ к среде передачи реализуется на основе принципа «первый пришел - первым обслужен». Другими словами, каждое сетевое устройство борется за контроль над средой передачи. Системы, использующие метод состязания, разработаны таким образом, чтобы все устройства в сети могли передавать данные лишь по мере необходимости. Эта практика в конечном счете приводит к частичной или полной потере данных, потому что в действительности происходят коллизии. По мере добавления к сети каждого нового устройства количество коллизий может возрастать в геометрической прогрессии. Увеличение количества коллизий снижает производительность сети, а в случае полного насыщения среды передачи информации - снижает работоспособность сети до нуля.

Для снижения количества коллизий разработаны специальные протоколы, в которых реализована функция прослушивания среды передачи информации до начала передачи данных станцией. Если прослушивающая станция обнаруживает передачу сигнала (от другой станции), то она воздерживается от передачи информации и будет пытаться повторить ее позже. Эти протоколы называются протоколами множественного доступа с контролем несущей (Carrier Sense Multiple Access, CSMA). Протоколы CSMA значительно снижают число коллизий, но не устраняют их полностью. Коллизии тем не менее происходят, когда две станции опрашивают кабель: не обнаруживают никаких сигналов, решают, что среда передачи данных свободна, а затем одновременно начинают передачу данных.

Примерами таких состязательных протоколов являются:

  • множественный доступ с контролем несущей/обнаружением коллизий (Carrier Sense Multiple Access/Collision Detection, CSMA/CD);
  • множественный доступ с контролем несущей/предотвращением коллизий (Carrier Sense Multiple Access/Collision Avoidance, CSMA/CA).

Протоколы CSMA/CD. Протоколы CSMA/CD не только прослушивают кабель перед передачей, но также обнаруживают коллизии и инициализируют повторные передачи. При обнаружении коллизии станции, передававшие данные, инициализируют специальные внутренние таймеры случайными значениями. Таймеры начинают обратный отсчет, и при достижении нуля станции должны попытаться повторить передачу данных. Поскольку таймеры были инициализированы случайными значениями, то одна из станций будет пытаться повторить передачу данных раньше другой. Соответственно, вторая станция определит, что среда передачи данных уже занята, и дождется ее освобождения.

Примерами протоколов CSMA/CD являются Ethernet version 2 (Ethernet II, разработанный в корпорации DEC) и IEEE802.3.

Протоколы CSMA/CA. CSMA/CA использует такие схемы, как доступ с квантованием времени (time slicing) или посылка запроса на получение доступа к среде. При использовании квантования времени каждая станция может передавать информацию только в строго определенные для этой станции моменты времени. При этом в сети должен реализовываться механизм управления квантами времени. Каждая новая станция, подключаемая к сети, оповещает о своем появлении, тем самым инициируя процесс перераспределения квантов времени для передачи информации. В случае использования централизованного управления доступом к среде передачи каждая станция формирует специальный запрос на передачу, который адресуется к управляющей станции. Центральная станция регулирует доступ к среде передачи для всех сетевых объектов.

Примером CSMA/CA является протокол LocalTalk фирмы Apple Computer.

Системы на основе метода состязания больше всего подходят для использования при импульсном трафике (при передаче больших файлов) в сетях с относительно небольшим количеством пользователей.

Системы с передачей маркера. В системах с передачей маркера (token passing) небольшой фрейм (маркер) передается в определенном порядке от одного устройства к другому. Маркер - это специальное сообщение, которое передает временное управление средой передачи устройству, владеющему маркером. Передача маркера распределяет управление доступом между устройствами сети.

Каждое устройство знает, от какого устройства оно получает маркер и какому устройству должно его передать. Обычно такими устройствами являются ближайшие соседи владельца маркера. Каждое устройство периодически получает контроль над маркером, выполняет свои действия (передает информацию), а затем передает маркер для использования следующему устройству. Протоколы ограничивают время контроля маркера каждым устройством.

Имеется несколько протоколов передачи маркера. Двумя стандартами сетей, использующими передачу маркера, являются IEEE 802.4 Token Bus и IEEE 802.5 Token Ring. В сети Token Bus используется управление доступом с передачей маркера и физическая или логическая шинная топология, в то время как в сети Token Ring используется управление доступом с передачей маркера и физическая или логическая кольцевая топология.

Сети с передачей маркера следует использовать при наличии зависящего от времени приоритетного трафика, типа цифровых аудио- или видеоданных, или же при наличии очень большого количества пользователей.

Опрос. Опрос (polling) - это метод доступа, при котором выделяется одно устройство (называемое контроллером, первичным, или «мастер»-устройством) в качестве арбитра доступа к среде. Это устройство опрашивает все остальные устройства (вторичные) в некотором предопределенном порядке, чтобы узнать, имеют ли они информацию для передачи. Чтобы получить данные от вторичного устройства, первичное устройство направляет ему соответствующий запрос, а затем получает данные от вторичного устройства и направляет их устройству-получателю. Затем первичное устройство опрашивает другое вторичное устройство, принимает данные от него, и так далее. Протокол ограничивает количество данных, которое может передать после опроса каждое вторичное устройство. Опросные системы идеальны для сетевых устройств, чувствительных ко времени, например, при автоматизации оборудования.

Этот уровень также обеспечивает сервис соединений. Существует три типа сервиса соединений:

  • сервис без подтверждения и без установления соединений (unacknowledged connectionless) - посылает и получает фреймы без управления потоком и без контроля ошибок или последовательности пакетов;
  • сервис, ориентированный на соединение (connection-oriented), - обеспечивает управление потоком, контроль ошибок и последовательности пакетов посредством выдачи квитанций (подтверждений);
  • сервис с подтверждением без установления соединения (acknowledged connectionless) - использует квитанции для управления потоком и контроля ошибок при передачах между двумя узлами сети.

Подуровень LLC канального уровня обеспечивает возможность одновременного использования нескольких сетевых протоколов (из разных стеков протоколов) при работе через один сетевой интерфейс. Другими словами, если в компьютере установлена только одна сетевая карта, но есть необходимость работать с различными сетевыми сервисами от разных производителей, то клиентское сетевое программное обеспечение именно на подуровне LLC обеспечивает возможность такой работы.

Сетевой уровень

Сетевой уровень определяет правила доставки данных между логическими сетями, формирование логических адресов сетевых устройств, определение, выбор и поддержание маршрутной информации, функционирование шлюзов (gateways).

Главной целью сетевого уровня является решение задачи перемещения (доставки) данных в заданные точки сети. Доставка данных на сетевом уровне в общем-то похожа на доставку данных на канальном уровне модели OSI, где для передачи данных используется физическая адресация устройств. Однако адресация на канальном уровне относится только к одной логической сети, действует только внутри этой сети. Сетевой уровень описывает методы и средства передачи информации между многими независимыми (и часто разнородными) логическими сетями, которые, соединенные вместе, формируют одну большую сеть. Такая сеть называется объединенной сетью (internetwork), а процессы передачи информации между сетями - межсетевым взаимодействием (internetworking).

С помощью физической адресации на канальном уровне данные доставляются всем устройствам, входящим в одну логическую сеть. Каждое сетевое устройство, каждый компьютер определяют назначение принятых данных. Если данные предназначены компьютеру, то он их обрабатывает, если же нет - игнорирует.

В отличие от канального сетевой уровень может выбирать конкретный маршрут в объединенной сети и избегать посылки данных в те логические сети, в которые данные не адресованы. Сетевой уровень осуществляет это путем коммутаций, адресации на сетевом уровне и с использованием алгоритмов маршрутизации. Сетевой уровень также отвечает за обеспечение правильных маршрутов для данных через объединенную сеть, состоящую из разнородных сетей.

Элементы и методы реализации сетевого уровня определяются следующим:

  • все логически отдельные сети должны иметь уникальные сетевые адреса;
  • коммутация определяет, как устанавливаются соединения через объединенную сеть;
  • возможность реализовать маршрутизацию так, чтобы компьютеры и маршрутизаторы определяли наилучший путь прохождения данных через объединенную сеть;
  • сеть будет выполнять различные уровни сервиса соединений в зависимости от ожидаемого в рамках объединенной сети количества ошибок.

На этом уровне модели OSI работают маршрутизаторы и некоторые из коммутаторов.

Сетевой уровень определяет правила формирования логических адресов (logical network address) сетевых объектов. В рамках большой объединенной сети каждый сетевой объект должен обладать уникальным логическим адресом. В формировании логического адреса участвуют два компонента: логический адрес сети, который является общим для всех объектов сети, и логический адрес сетевого объекта, который является уникальным для этого объекта. При формировании логического адреса сетевого объекта может либо использоваться физический адрес объекта, либо определяться произвольный логический адрес. Использование логической адресации позволяет организовать передачу данных между разными логическими сетями.

Каждый сетевой объект, каждый компьютер может выполнять много сетевых функций одновременно, обеспечивая работу различных сервисов. Для обращения к сервисам используется специальный идентификатор сервиса, который называется порт (port), или сокет (socket). При обращении к сервису идентификатор сервиса следует сразу за логическим адресом компьютера, обеспечивающего работу сервиса.

Во многих сетях резервируются группы логических адресов и идентификаторов сервисов с целью выполнения конкретных заранее определенных и общеизвестных действий. Например, в случае необходимости отправить данные всем сетевым объектам отправка будет произведена на специальный broadcast-адрес.

Сетевой уровень определяет правила передачи данных между двумя сетевыми объектами. Эта передача может осуществляться с использованием коммутации или маршрутизации.

Различают три метода коммутации при передаче данных: коммутация каналов, коммутация сообщений и коммутация пакетов.

При использовании коммутации каналов устанавливается канал передачи данных между отправителем и получателем. Этот канал будет задействован в течение всего сеанса связи. При использовании этого метода возможны длительные задержки при выделении канала, связанные с отсутствием достаточной полосы пропускания, загруженностью коммутационного оборудования или занятостью получателя.

Коммутация сообщений позволяет передавать целое (неразбитое на части) сообщение по принципу «сохранить и передать дальше» (store-and-forward). Каждое промежуточное устройство принимает сообщение, локально его сохраняет и при освобождении канала связи, по которому это сообщение должно быть отправлено, отправляет его. Этот метод хорошо подходит для передачи сообщений электронной почты и организации электронного документооборота.

При использовании коммутации пакетов соединяются вместе преимущества двух предыдущих методов. Каждое большое сообщение разбивается на небольшие пакеты, каждый из которых последовательно отправляется получателю. При прохождении через объединенную сеть для каждого из пакетов определяется наилучший в этот момент времени путь. Получается, что части одного сообщения могут прийти к получателю в разное время и только после того, как все части будут собраны вместе, получатель сможет работать с полученными данными.

Каждый раз при определении дальнейшего пути для данных необходимо выбрать наилучший маршрут. Задача определения наилучшего пути называется маршрутизацией (routing). Эту задачу выполняют маршрутизаторы (router). Задача маршрутизаторов - определение возможных путей передачи данных, поддержание маршрутной информации, выбор наилучших маршрутов. Маршрутизация может осуществляться статическим либо динамическим способом. При задании статической маршрутизации должны быть заданы все взаимосвязи между логическими сетями, которые остаются неизменными. Динамическая маршрутизация предполагает, что маршрутизатор может сам определять новые пути либо модифицировать информацию о старых. Динамическая маршрутизация использует специальные алгоритмы маршрутизации, наиболее распространенными из которых являются вектор дистанции (distance vector) и состояние канала (link state). В первом случае маршрутизатор использует информацию о структуре сети от соседних маршрутизаторов, из вторых рук. Во втором случае маршрутизатор оперирует информацией о собственных каналах связи и взаимодействует со специальным представительским маршрутизатором для построения полной карты сети.

На выбор наилучшего маршрута чаще всего влияют такие факторы, как количество переходов через маршрутизаторы (hop count) и количество тиков (единиц времени), необходимых для достижения сети назначения (tick count).

Сервис соединений сетевого уровня работает тогда, когда сервис соединений LLC-подуровня канального уровня модели OSI не используется.

При построении объединенной сети приходится соединять логические сети, построенные с использованием различных технологий и предоставляющие разнообразные сервисы. Для того чтобы сеть могла работать, логические сети должны уметь правильно интерпретировать данные и управляющую информацию. Эта задача решается с помощью шлюза, который представляет собой устройство, или прикладную программу, переводящую и интерпретирующую правила одной логической сети в правила другой. Вообще, шлюзы могут быть реализованы на любом уровне модели OSI, однако чаще всего они реализуются на верхних уровнях модели.

Транспортный уровень

Транспортный уровень позволяет спрятать физическую и логическую структуры сети от приложений верхних уровней модели OSI. Приложения работают только с сервисными функциями, которые достаточно универсальны и не зависят от физической и логической топологий сети. Особенности логической и физической сетей реализуются на предыдущих уровнях, куда транспортный уровень передает данные.

Транспортный уровень часто компенсирует отсутствие надежного или ориентированного на соединение сервиса соединений на нижних уровнях. Термин «надежный» (reliable) не означает, что все данные будут доставлены во всех случаях. Тем не менее надежные реализации протоколов транспортного уровня обычно могут подтверждать или отрицать доставку данных. Если данные не доставлены принимающему устройству правильно, транспортный уровень может осуществить повторную передачу или информировать верхние уровни о невозможности доставки. Верхние уровни могут затем предпринять необходимые корректирующие действия или обеспечить пользователя возможностью выбора.

Многие протоколы в вычислительных сетях обеспечивают пользователям возможность работы с простыми именами на естественном языке вместо сложных и тяжелых для запоминания алфавитно-цифровых адресов. Преобразование адресов в имена и обратно (Address/Name Resolution) является функцией идентификации или отображения имен и алфавитно-цифровых адресов друг в друга. Эта функция может выполняться каждым объектом в сети или поставщиками специального сервиса, называемыми каталоговыми серверами (directory server), серверами имен (name server) и т.п. Следующие определения классифицируют методы преобразования адресов/имен:

  • инициация потребителем сервиса;
  • инициация поставщиком сервиса.

В первом случае пользователь сети обращается к какому-либо сервису по его логическому имени, не зная точное расположение сервиса. Пользователь не знает, доступен ли этот сервис в данный момент. При обращении логическое имя ставится в соответствие физическому имени, и рабочая станция пользователя инициирует обращение непосредственно к сервису. Во втором случае каждый сервис извещает о себе всех клиентов сети на периодической основе. Каждый из клиентов в любой момент времени знает, доступен ли сервис, и умеет обратиться непосредственно к сервису.

Методы адресации

Адреса сервиса идентифицируют конкретные программные процессы, выполняемые на сетевых устройствах. В дополнение к этим адресам поставщики сервиса отслеживают различные диалоги, которые они ведут с устройствами, запрашивающими услуги. Два различных метода диалога используют следующие адреса:

  • идентификатор соединения;
  • идентификатор транзакции.

Идентификатор соединения (connection identifier), также называемый ID соединения (connection ID), портом (port), или сокетом (socket), идентифицирует каждый диалог. С помощью идентификатора соединения поставщик соединения может связываться более чем с одним клиентом. Поставщик сервиса обращается к каждому объекту коммутации по его номеру, а для координации других адресов нижнего уровня полагается на транспортный уровень. Идентификатор соединения связан с конкретным диалогом.

Идентификаторы транзакций подобны идентификаторам соединений, но оперируют единицами, меньшими, чем диалог. Транзакция составляется из запроса и ответа. Поставщики и потребители сервиса отслеживают отправление и прибытие каждой транзакции, а не диалога в целом.

Сеансовый уровень

Сеансовый уровень способствует взаимодействию между устройствами, запрашивающими и поставляющими услуги. Сеансы связи контролируются посредством механизмов, которые устанавливают, поддерживают, синхронизируют и управляют диалогом между поддерживающими связь объектами. Этот уровень также помогает верхним уровням идентифицировать доступный сетевой сервис и соединиться с ним.

Сеансовый уровень использует информацию о логических адресах, поставляемую нижними уровнями, для идентификации имен и адресов серверов, необходимых верхним уровням.

Сеансовый уровень также инициирует диалоги между устройствами-поставщиками сервиса и устройствами-потребителями. Выполняя эту функцию, сеансовый уровень часто осуществляет представление, или идентификацию, каждого объекта и координирует права доступа к нему.

Сеансовый уровень реализует управление диалогом с использованием одного из трех способов общения - симплекс (simplex), полудуплекс (half duplex) и полный дуплекс (full duplex).

Симплексное общение предполагает только однонаправленную передачу от источника к приемнику информации. Никакой обратной связи (от приемника к источнику) этот способ общения не обеспечивает. Полудуплекс позволяет использовать одну среду передачи данных для двунаправленных передач информации, однако в каждый момент времени информация может передаваться только в одну сторону. Полный дуплекс обеспечивает одновременную передачу информации в обе стороны по среде передачи данных.

Администрирование сеанса связи между двумя сетевыми объектами, состоящее из установления соединения, передачи данных, завершения соединения, также выполняется на этом уровне модели OSI. После установления сеанса программное обеспечение, реализующее функции данного уровня, может проверять работоспособность (поддерживать) соединения вплоть до его завершения.

Уровень представления данных

Основная задача уровня представления данных - преобразование данных во взаимно согласованные форматы (синтаксис обмена), понятные всем сетевым приложениям и компьютерам, на которых работают приложения. На этом уровне также решаются задачи компрессии и декомпрессии данных и их шифрование.

Под преобразованием понимается изменение порядка битов в байтах, порядка байтов в слове, кодов символов и синтаксиса имен файлов.

Необходимость изменения порядков битов и байтов обусловлена наличием большого количества разнообразных процессоров, вычислительных машин, комплексов и систем. Процессоры разных производителей могут по-разному трактовать нулевой и седьмой биты в байте (либо нулевой бит является старшим, либо - седьмой). Аналогично по-разному трактуются байты, из которых состоят большие единицы информации - слова.

Для того чтобы пользователи различных операционных систем могли получать информацию в виде файлов с корректными именами и содержимым, этот уровень обеспечивает корректное преобразование синтаксиса файлов. Различные операционные системы по-разному работают со своими файловыми системами, реализуют разные способы формирования имен файлов. Информация в файлах также хранится в определенной кодировке символов. При взаимодействии двух сетевых объектов важно, чтобы каждый из них мог интерпретировать файловую информацию по-своему, но смысл информации изменяться не должен.

Уровень представления данных преобразует данные во взаимно согласованный формат (синтаксис обмена), понятный всем сетевым приложениям и компьютерам, на которых работают приложения. Может, кроме того, сжимать и разворачивать, а также шифровать и расшифровывать данные.

Компьютеры используют различные правила представления данных с помощью двоичных нулей и единиц. Несмотря на то что все эти правила пытаются достичь общей цели - представить данные, понятные человеку, производители компьютеров и стандартизирующие организации создали правила, противоречащие друг другу. Когда два компьютера, использующие различные наборы правил, пытаются связаться друг с другом, им часто бывает необходимо выполнить некоторые преобразования.

Локальные и сетевые операционные системы часто шифруют данные для защиты их от несанкционированного использования. Шифрование - это общий термин, который описывает некоторые методы защиты данных. Защита зачастую выполняется с помощью перемешивания данных (data scrambling), при котором используется один или несколько методов из трех: перестановка, подстановка, алгебраический метод.

Каждый из подобных методов - это просто особый способ защиты данных таким образом, чтобы они могли быть поняты только тем, кто знает алгоритм шифрования. Шифрование данных может выполняться как аппаратно, так и программно. Однако сквозное шифрование данных обычно выполняется программным способом и считается частью функций уровня представления данных. Для оповещения объектов об используемом методе шифрования обычно применяется 2 метода - секретные ключи и открытые ключи.

Методы шифрования с секретным ключом используют единственный ключ. Сетевые объекты, владеющие ключом, могут шифровать и расшифровывать каждое сообщение. Следовательно, ключ должен сохраняться в секрете. Ключ может быть встроен в микросхемы оборудования или установлен администратором сети. При каждом изменении ключа все устройства должны быть модифицированы (желательно не использовать сеть для передачи значения нового ключа).

Сетевые объекты, использующие методы шифрования с открытым ключом, обеспечиваются секретным ключом и некоторым известным значением. Объект создает открытый ключ, манипулируя известным значением посредством секретного ключа. Объект, инициирующий коммуникацию, посылает свой открытый ключ приемнику. Другой объект затем математически комбинирует собственный секретный ключ с переданным ему открытым ключом для установки взаимоприемлемого значения шифрования.

Владение только открытым ключом мало полезно несанкционированным пользователям. Сложность результирующего ключа шифрования достаточно велика, чтобы его можно было вычислить за приемлемое время. Даже знание собственного секретного ключа и чьего-то открытого ключа не слишком поможет определить другой секретный ключ - из-за сложности логарифмических вычислений для больших чисел.

Прикладной уровень

Прикладной уровень содержит все элементы и функции, специфичные для каждого вида сетевого сервиса. Шесть нижних уровней объединяют задачи и технологии, обеспечивающие общую поддержку сетевого сервиса, в то время как прикладной уровень обеспечивает протоколы, необходимые для выполнения конкретных функций сетевого сервиса.

Серверы представляют клиентам сети информацию о том, какие виды сервиса они обеспечивают. Основные механизмы идентификации предлагаемых услуг обеспечивают такие элементы, как адреса сервиса. Кроме того, серверы используют такие методы представления своего сервиса, как активное и пассивное представление сервиса.

При осуществлении активного представления сервиса (Active service advertisement) каждый сервер периодически посылает сообщения (включающие адреса сервиса), объявляя о своей доступности. Клиенты также могут опрашивать сетевые устройства в поисках определенного типа сервиса. Клиенты сети собирают представления, сделанные серверами, и формируют таблицы доступных в настоящее время видов сервиса. Большинство сетей, использующих метод активного представления, определяют также конкретный период действия представлений сервиса. Например, если сетевой протокол определяет, что представления сервиса должны посылаться каждые пять минут, то клиенты будут удалять по тайм-ауту те виды сервиса, которые не были представлены в течение последних пяти минут. По истечении тайм-аута клиент удаляет сервис из своих таблиц.

Серверы осуществляют пассивное представление сервиса (Passive service advertisement) путем регистрации своего сервиса и адреса в каталоге. Когда клиенты хотят определить доступные виды сервиса, они просто запрашивают каталог о местоположении нужного сервиса и об его адресе.

Прежде чем сетевой сервис может быть использован, он должен стать доступным локальной операционной системе компьютера. Существует несколько методов решения этой задачи, однако каждый такой метод может быть определен положением или уровнем, на котором локальная операционная система распознает сетевую операционную систему. Предоставляемый сервис можно подразделить на три категории:

  • перехват вызовов операционной системы;
  • удаленный режим;
  • совместная обработка данных.

При использовании перехвата вызовов ОС (OC Call Interception) локальная операционная система совершенно не подозревает о существовании сетевого сервиса. Например, когда приложение DOS пытается читать файл с сетевого файл-сервера, оно считает, что данный файл находится на локальном накопителе. В действительности специальный фрагмент программного обеспечения перехватывает запрос на чтение файла прежде, чем он достигнет локальной операционной системы (DOS), и направляет запрос сетевому файловому сервису.

В другом крайнем случае, при удаленном режиме (Remote Operation) работы локальная операционная система знает о сети и ответственна за передачу запросов к сетевому сервису. Однако сервер ничего не знает о клиенте. Для операционной системы сервера все запросы к сервису выглядят одинаково, независимо от того, являются ли они внутренними или переданы по сети.

Наконец, существуют операционные системы, которые знают о существовании сети. И потребитель сервиса, и поставщик сервиса распознают существование друг друга и работают вместе, координируя использование сервиса. Этот тип использования сервиса обычно требуется для одноранговой совместной обработки данных. Совместная обработка данных подразумевает разделение возможностей обработки данных для выполнения единой задачи. Это означает, что операционная система должна знать о существовании и возможностях других и быть способной кооперироваться с ними для выполнения нужной задачи.

КомпьютерПресс 6"1999

Разработка которого не была связана с моделью OSI.

Уровни модели OSI

Модель состоит из 7-ми уровней, расположенных друг над другом. Уровни взаимодействуют друг с другом (по «вертикали») посредством интерфейсов, и могут взаимодействовать с параллельным уровнем другой системы (по «горизонтали») с помощью протоколов. Каждый уровень может взаимодействовать только со своими соседями и выполнять отведённые только ему функции. Подробнее можно посмотреть на рисунке.

Модель OSI
Тип данных Уровень Функции
Данные 7. Прикладной уровень Доступ к сетевым службам
6. Уровень представления Представление и кодирование данных
5. Сеансовый уровень Управление сеансом связи
Сегменты 4. Транспортный Прямая связь между конечными пунктами и надежность
Пакеты 3. Сетевой Определение маршрута и логическая адресация
Кадры 2. Канальный Физическая адресация
Биты 1. Физический уровень Работа со средой передачи, сигналами и двоичными данными

Прикладной (Приложений) уровень (англ. Application layer )

Верхний уровень модели, обеспечивает взаимодействие пользовательских приложений с сетью. Этот уровень позволяет приложениям использовать сетевые службы, такие как удалённый доступ к файлам и базам данных, пересылка электронной почты. Также отвечает за передачу служебной информации, предоставляет приложениям информацию об ошибках и формирует запросы к уровню представления . Пример: HTTP , POP3 , SMTP , FTP , XMPP , OSCAR , BitTorrent , MODBUS, SIP

Представительский (Уровень представления) (англ. Presentation layer )

Этот уровень отвечает за преобразование протоколов и кодирование/декодирование данных. Запросы приложений, полученные с прикладного уровня, он преобразует в формат для передачи по сети, а полученные из сети данные преобразует в формат, понятный приложениям. На этом уровне может осуществляться сжатие/распаковка или кодирование/декодирование данных, а также перенаправление запросов другому сетевому ресурсу, если они не могут быть обработаны локально.

Уровень 6 (представлений) эталонной модели OSI обычно представляет собой промежуточный протокол для преобразования информации из соседних уровней. Это позволяет осуществлять обмен между приложениями на разнородных компьютерных системах прозрачным для приложений образом. Уровень представлений обеспечивает форматирование и преобразование кода. Форматирование кода используется для того, чтобы гарантировать приложению поступление информации для обработки, которая имела бы для него смысл. При необходимости этот уровень может выполнять перевод из одного формата данных в другой. Уровень представлений имеет дело не только с форматами и представлением данных, он также занимается структурами данных, которые используются программами. Таким образом, уровень 6 обеспечивает организацию данных при их пересылке.

Чтобы понять, как это работает, представим, что имеются две системы. Одна использует для представления данных расширенный двоичный код обмена информацией EBCDIC , например, это может быть мэйнфрейм компании IBM, а другая - американский стандартный код обмена информацией ASCII (его используют большинство других производителей компьютеров). Если этим двум системам необходимо обменяться информацией, то нужен уровень представлений, который выполнит преобразование и осуществит перевод между двумя различными форматами.

Другой функцией, выполняемой на уровне представлений, является шифрование данных, которое применяется в тех случаях, когда необходимо защитить передаваемую информацию от приема несанкционированными получателями. Чтобы решить эту задачу, процессы и коды, находящиеся на уровне представлений, должны выполнить преобразование данных. На этом уровне существуют и другие подпрограммы, которые сжимают тексты и преобразовывают графические изображения в битовые потоки, так что они могут передаваться по сети.

Стандарты уровня представлений также определяют способы представления графических изображений. Для этих целей может использоваться формат PICT - формат изображений, применяемый для передачи графики QuickDraw между программами для компьютеров Macintosh и PowerPC. Другим форматом представлений является тэгированный формат файлов изображений TIFF , который обычно используется для растровых изображений с высоким разрешением. Следующим стандартом уровня представлений, который может использоваться для графических изображений, является стандарт, разработанный Объединенной экспертной группой по фотографии (Joint Photographic Expert Group); в повседневном пользовании этот стандарт называют просто JPEG .

Существует другая группа стандартов уровня представлений, которая определяет представление звука и кинофрагментов. Сюда входят интерфейс электронных музыкальных инструментов MIDI (Musical Instrument Digital Interface) для цифрового представления музыки, разработанный Экспертной группой по кинематографии стандарт MPEG , используемый для сжатия и кодирования видеороликов на компакт-дисках, хранения в оцифрованном виде и передачи со скоростями до 1,5 Мбит/с, и QuickTime - стандарт, описывающий звуковые и видео элементы для программ, выполняемых на компьютерах Macintosh и PowerPC.

Сеансовый уровень (англ. Session layer )

5-й уровень модели отвечает за поддержание сеанса связи, позволяя приложениям взаимодействовать между собой длительное время. Уровень управляет созданием/завершением сеанса, обменом информацией, синхронизацией задач, определением права на передачу данных и поддержанием сеанса в периоды неактивности приложений. Синхронизация передачи обеспечивается помещением в поток данных контрольных точек, начиная с которых возобновляется процесс при нарушении взаимодействия.

Транспортный уровень (англ. Transport layer )

4-й уровень модели предназначен для доставки данных без ошибок, потерь и дублирования в той последовательности, как они были переданы. При этом не важно, какие данные передаются, откуда и куда, то есть он предоставляет сам механизм передачи. Блоки данных он разделяет на фрагменты, размер которых зависит от протокола, короткие объединяет в один, а длинные разбивает. Пример: TCP , UDP .

Существует множество классов протоколов транспортного уровня, начиная от протоколов, предоставляющих только основные транспортные функции (например, функции передачи данных без подтверждения приема), и заканчивая протоколами, которые гарантируют доставку в пункт назначения нескольких пакетов данных в надлежащей последовательности, мультиплексируют несколько потоков данных, обеспечивают механизм управления потоками данных и гарантируют достоверность принятых данных.

Некоторые протоколы сетевого уровня, называемые протоколами без установки соединения, не гарантируют, что данные доставляются по назначению в том порядке, в котором они были посланы устройством-источником. Некоторые транспортные уровни справляются с этим, собирая данные в нужной последовательности до передачи их на сеансовый уровень. Мультиплексирование (multiplexing) данных означает, что транспортный уровень способен одновременно обрабатывать несколько потоков данных (потоки могут поступать и от различных приложений) между двумя системами. Механизм управления потоком данных - это механизм, позволяющий регулировать количество данных, передаваемых от одной системы к другой. Протоколы транспортного уровня часто имеют функцию контроля доставки данных, заставляя принимающую данные систему отправлять подтверждения передающей стороне о приеме данных.

Описать работу протоколов с установкой соединения можно на примере работы обычного телефона. Протоколы этого класса начинают передачу данных с вызова или установки маршрута следования пакетов от источника к получателю. После чего начинают последовательную передачу данных и затем по окончании передачи разрывают связь.

Протоколы без установки соединения, которые посылают данные, содержащие полную адресную информацию в каждом пакете, работают аналогично почтовой системе. Каждое письмо или пакет содержит адрес отправителя и получателя. Далее каждый промежуточный почтамт или сетевое устройство считывает адресную информацию и принимает решение о маршрутизации данных. Письмо или пакет данных передается от одного промежуточного устройства к другому до тех пор, пока не будет доставлено получателю. Протоколы без установки соединения не гарантируют поступление информации получателю в том порядке, в котором она была отправлена. За установку данных в соответствующем порядке при использовании сетевых протоколов без установки соединения отвечают транспортные протоколы.

Сетевой уровень (англ. Network layer )

3-й уровень сетевой модели OSI предназначен для определения пути передачи данных. Отвечает за трансляцию логических адресов и имён в физические, определение кратчайших маршрутов, коммутацию и маршрутизацию, отслеживание неполадок и заторов в сети. На этом уровне работает такое сетевое устройство, как маршрутизатор .

Протоколы сетевого уровня маршрутизируют данные от источника к получателю.

Канальный уровень (англ. Data Link layer )

Этот уровень предназначен для обеспечения взаимодействия сетей на физическом уровне и контроля за ошибками, которые могут возникнуть. Полученные с физического уровня данные он упаковывает во фреймы , проверяет на целостность, если нужно исправляет ошибки (посылает повторный запрос поврежденного кадра) и отправляет на сетевой уровень. Канальный уровень может взаимодействовать с одним или несколькими физическими уровнями, контролируя и управляя этим взаимодействием. Спецификация IEEE 802 разделяет этот уровень на 2 подуровня - MAC (Media Access Control) регулирует доступ к разделяемой физической среде, LLC (Logical Link Control) обеспечивает обслуживание сетевого уровня.

В программировании этот уровень представляет драйвер сетевой платы, в операционных системах имеется программный интерфейс взаимодействия канального и сетевого уровней между собой, это не новый уровень, а просто реализация модели для конкретной ОС. Примеры таких интерфейсов: ODI , NDIS

Физический уровень (англ. Physical layer )

Самый нижний уровень модели предназначен непосредственно для передачи потока данных. Осуществляет передачу электрических или оптических сигналов в кабель или в радиоэфир и, соответственно, их приём и преобразование в биты данных в соответствии с методами кодирования цифровых сигналов . Другими словами, осуществляет интерфейс между сетевым носителем и сетевым устройством.

Модель OSI и реальные протоколы

Семиуровневая модель OSI является теоретической, и содержит ряд недоработок. Были попытки строить сети в точном соответствии с моделью OSI, но созданные таким образом сети были дорогими, ненадёжными и неудобными в эксплуатации. Реальные сетевые протоколы, используемые в существующих сетях, вынуждены отклоняться от неё, обеспечивая непредусмотренные возможности, поэтому привязка некоторых из них к уровням OSI является несколько условной: некоторые протоколы занимают несколько уровней модели OSI, функции обеспечения надёжности реализованы на нескольких уровнях модели OSI.

Основная недоработка OSI - непродуманный транспортный уровень. На нём OSI позволяет осуществлять обмен данными между приложениями (вводя понятие порта - идентификатора приложения), однако, возможность обмена простыми датаграммами (по типу UDP) в OSI не предусмотрена - транспортный уровень должен образовывать соединения, обеспечивать доставку, управлять потоком и т. п. (по типу TCP). Реальные же протоколы реализуют такую возможность.

Семейство TCP/IP

Семейство TCP/IP имеет три транспортных протокола: TCP, полностью соответствующий OSI, обеспечивающий проверку получения данных, UDP, отвечающий транспортному уровню только наличием порта, обеспечивающий обмен датаграммами между приложениями, не гарантирующий получения данных и SCTP , разработанный для устранения некоторых недостатков TCP и в который добавлены некоторые новшества. (В семействе TCP/IP есть ещё около двухсот протоколов, самым известным из которых является служебный протокол ICMP , используемый для внутренних нужд обеспечения работы; остальные также не являются транспортными протоколами.)

Семейство IPX/SPX

В семействе IPX/SPX порты (называемые «сокеты» или «гнёзда») появляются в протоколе сетевого уровня IPX, обеспечивая обмен датаграммами между приложениями (операционная система резервирует часть сокетов для себя). Протокол SPX, в свою очередь, дополняет IPX всеми остальными возможностями транспортного уровня в полном соответствии с OSI.

В качестве адреса хоста IPX использует идентификатор, образованный из четырёхбайтного номера сети (назначаемого маршрутизаторами) и MAC-адреса сетевого адаптера.

Модель DOD

Стек протоколов TCP/IP, использующий упрощённую четырёхуровневую модель OSI.

Адресация в IPv6

Адреса назначения и источника в IPv6 имеют длину 128 бит или 16 байт. Версия 6 обобщает специальные типы адресов версии 4 в следующих типах адресов:

  • Unicast – индивидуальный адрес. Определяет отдельный узел – компьютер или порт маршрутизатора. Пакет должен быть доставлен узлу по кратчайшему маршруту.
  • Cluster – адрес кластера. Обозначает группу узлов, которые имеют общий адресный префикс (например, присоединенных к одной физической сети). Пакет должен быть маршрутизирован группе узлов по кратчайшему пути, а затем доставлен только одному из членов группы (например, ближайшему узлу).
  • Multicast – адрес набора узлов, возможно в различных физических сетях. Копии пакета должны быть доставлены каждому узлу набора, используя аппаратные возможности групповой или широковещательной доставки, если это возможно.

Как и в версии IPv4, адреса в версии IPv6 делятся на классы, в зависимости от значения нескольких старших бит адреса.

Большая часть классов зарезервирована для будущего применения. Наиболее интересным для практического использования является класс, предназначенный для провайдеров услуг Internet, названный Provider-Assigned Unicast .

Адрес этого класса имеет следующую структуру:

Каждому провайдеру услуг Internet назначается уникальный идентификатор, которым помечаются все поддерживаемые им сети. Далее провайдер назначает своим абонентам уникальные идентификаторы, и использует оба идентификатора при назначении блока адресов абонента. Абонент сам назначает уникальные идентификаторы своим подсетям и узлам этих сетей.

Абонент может использовать технику подсетей, применяемую в версии IPv4, для дальнейшего деления поля идентификатора подсети на более мелкие поля.

Описанная схема приближает схему адресации IPv6 к схемам, используемым в территориальных сетях, таких как телефонные сети или сети Х.25. Иерархия адресных полей позволит магистральным маршрутизаторам работать только со старшими частями адреса, оставляя обработку менее значимых полей маршрутизаторам абонентов.

Под поле идентификатора узла требуется выделения не менее 6 байт, для того чтобы можно было использовать в IP-адресах МАС-адреса локальных сетей непосредственно.

Для обеспечения совместимости со схемой адресации версии IPv4, в версии IPv6 имеется класс адресов, имеющих 0000 0000 в старших битах адреса. Младшие 4 байта адреса этого класса должны содержать адрес IPv4. Маршрутизаторы, поддерживающие обе версии адресов, должны обеспечивать трансляцию при передаче пакета из сети, поддерживающей адресацию IPv4, в сеть, поддерживающую адресацию IPv6, и наоборот.

Критика

Семиуровневая модель OSI критиковалась некоторыми специалистами. В частности в классической книге «UNIX. Руководство системного администратора» Эви Немет и другие пишут:

… Пока комитеты ISO спорили о своих стандартах, за их спиной менялась вся концепция организации сетей и по всему миру внедрялся протокол TCP/IP. …

И вот, когда протоколы ISO были наконец реализованы,выявился целый ряд проблем:
Эти протоколы основывались на концепциях, не имеющих в современных сетях никакого смысла.
Их спецификации были в некоторых случаях неполными.
По своим функциональным возможностям они уступали другим протоколам.
Наличие многочисленных уровней сделало эти протоколы медлительными и трудными для реализации.

… Сейчас даже самые рьяные сторонники этих протоколов признают, что OSI постепенно движется к тому, чтобы стать маленькой сноской на страницах истории компьютеров.

В сегодняшней статье я хочу вернуться к основам, и расскажу о модели взаимодействия открытых систем OSI . Данный материал будет полезен начинающим системным администраторам и всем тем, кто интересуется построением компьютерных сетей.

Все составляющие сети, начиная со среды передачи данных и заканчивая оборудованием, функционируют и взаимодействуют друг с другом согласно своду правил, которые описаны в так называемой модели взаимодействия открытых систем .

Модель взаимодействия открытых систем OSI (Open System Interconnection) разработана международной организацией по стандартам ISO (Inernational Standarts Organization).

Согласно модели OSI, данные, передаваемые от источника к адресату, проходят семь уровней . На каждом уровне выполняется определенная задача, что в итоге не только гарантирует доставку данных в конечный пункт, но и делает их передачу независимой от применяемых для этого средств. Таким образом, достигается совместимость между сетями с разными топологиями и сетевым оборудованием.

Разделение всех сетевых средств по уровням упрощает их разработку и применение. Чем выше уровень, тем более сложную задачу он решает. Первые три уровня модели OSI (физический, канальный, сетевой ) тесно связаны с сетью и используемым сетевым оборудованием. Последние три уровня (сеансовый, уровень представления данных, прикладной ) реализуются средствами операционной системы и прикладных программ. Транспортный уровень выступает в качестве посредника между этими двумя группами.

Перед пересылкой через сеть, данные разбиваются на пакеты , т.е. порции информации, организованные определенным образом, чтобы они были понятны принимающим и передающим устройствам. При отправке данных пакет последовательно обрабатывается средствами всех уровней модели OSI, начиная с прикладного и заканчивая физическим. На каждом уровне к пакету добавляется управляющая информация данного уровня (называемая заголовком пакета ), которая необходима для успешной передачи данных по сети.

В результате это сетевое послание начинает напоминать многослойный бутерброд, который должен быть “съедобным” для получившего его компьютера. Для этого необходимо придерживаться определенных правил обмена данными между сетевыми компьютерами. Такие правила получили названия протоколов .

На принимающей стороне пакет проходит обработку средствами всех уровней модели OSI в обратном порядке, начиная с физического и заканчивая прикладным. На каждом уровне соответствующие средства, руководствуясь протоколом уровня, читают информацию пакета, затем удаляют информацию, добавленную к пакету на этом же уровне отправляющей стороной, и передают пакет средствами следующего уровня. Когда пакет дойдет до прикладного уровня, вся управляющая информация будет удалена из пакета, и данные примут свой первоначальный вид.

Теперь рассмотрим работу каждого уровня модели OSI подробнее:

Физический уровень – самый нижний, за ним находится непосредственно канал связи, через который осуществляется передача информации. Он участвует в организации связи, учитывая особенности среды передачи данных. Так, он содержит все сведения о среде передачи данных: уровень и частоту сигнала, наличие помех, уровень затухания сигнала, сопротивление канала и т.д. Кроме того, именно он отвечает за передачу потока информации и преобразование ее в соответствии с существующими методами кодирования. Работа физического уровня изначально возлагается на сетевое оборудование.
Стоит отметить, что именно с помощью физического уровня определяется проводная и беспроводная сеть. В первом случае в качестве физической среды используется кабель, во втором – любой вид беспроводной связи, например радиоволны или инфракрасное излучение.

Канальный уровень выполняет самую сложную задачу – обеспечивает гарантированную передачу данных с помощью алгоритмов физического уровня и проверяет корректность полученных данных.

Прежде чем инициировать передачу данных, определяется доступность канала их передачи. Информация передается блоками, которые носят название кадров , или фреймов . Каждый такой кадр снабжается последовательностью бит в конце и начале блока, а также дополняется контрольной суммой. При приеме такого блока на канальный уровень получатель должен проверить целостность блока и сравнить принятую контрольную сумму с контрольной суммой, идущей в его составе. Если они совпадают, данные считаются корректными, иначе фиксируется ошибка и требуется повторная передача. В любом случае отправителю отсылается сигнал с результатом выполнения операции, и так происходит с каждым кадром. Таким образом, вторая важная задача канального уровня – проверка корректности данных.

Канальный уровень может реализовываться как аппаратно (например, с помощью коммутаторов), так и с помощью программного обеспечения (например, драйвера сетевого адаптера).

Сетевой уровень необходим для выполнения работы по передаче данных с предварительным определением оптимального пути движения пакетов. Поскольку сеть может состоять из сегментов с разными топологиями, главная задача сетевого уровня – определить кратчайший путь, попутно преобразовывая логические адреса и имена сетевых устройств в их физическое представление. Этот процесс носит название маршрутизации , и важность его трудно переоценить. Обладая схемой маршрутизации, которая постоянно обновляется в связи с возникновением разного рода “заторов” в сети, передача данных осуществляется в максимально короткие сроки и с максимальной скоростью.

Транспортный уровень используется для организации надежной передачи данных, которая исключает потерю информации, ее некорректность или дублирование. При этом контролируются соблюдение правильной последовательности при передаче-получении данных, деление их на более мелкие пакеты или объединение в более крупные для сохранения целостности информации.

Сеансовый уровень отвечает за создание, сопровождение и поддержание сеанса связи на время, необходимое для завершения передачи всего объема данных. Кроме того, он производит синхронизацию передачи пакетов, осуществляя проверку доставки и целостности пакета. В процессе передачи данных создаются специальные контрольные точки. Если при передаче-приеме произошел сбой, недостающие пакеты отправляются заново, начиная с ближайшей контрольной точки, что позволяет передать весь объем данных в максимально короткий срок, обеспечивая в целом хорошую скорость.

Уровень представления данных (или, как его еще называют, представительский уровень ) является промежуточным, его основная задача – преобразование данных из формата для передачи по сети в формат, понятный более высокому уровню, и наоборот. Кроме того, он отвечает за приведение данных к единому формату: когда информация передается между двумя абсолютно разными сетями с разным форматом данных, то прежде, чем их обработать, необходимо привести их к такому виду, который будет понятен как получателю, так и отправителю. Именно на этом уровне применяются алгоритмы шифрования и сжатия данных.

Прикладной уровень – последний и самый верхний в модели OSI. Отвечает за связь сети с пользователями – приложениями, которым требуется информация от сетевых служб всех уровней. С его помощью можно узнать все, что происходило в процессе передачи данных, а также информацию об ошибках, возникших в процессе их передачи. Кроме того, данный уровень обеспечивает работу всех внешних процессов, осуществляемых за счет доступа к сети – баз данных, почтовых клиентов, менеджеров загрузки файлов и т.д.

На просторах сети интернет я нашел картинку, на которой неизвестный автор представил сетевую модель OSI в виде бургера. Считаю, это очень запоминающийся образ. Если вдруг в какой-то ситуации (например, на собеседовании при устройстве на работу) вам понадобиться по памяти перечислить все семь уровней модели OSI в правильном порядке – просто вспомните данную картинку, и это вам поможет. Для удобства я перевел названия уровней с английского на русский язык:На сегодня это всё. В следующей статье я продолжу тему и расскажу про .

Модель Open Systems Interconnection (OSI) – это скелет, фундамент и база всех сетевых сущностей. Модель определяет сетевые протоколы, распределяя их на 7 логических уровней. Важно отметить, что в любом процессе, управление сетевой передачей переходит от уровня к уровню, последовательно подключая протоколы на каждом из уровней.

Видео: модель OSI за 7 минут

Нижние уровни отвечают за физические параметры передачи, такие как электрические сигналы. Да – да, сигналы в проводах передаются с помощью представления в токи:) Токи представляются в виде последовательности единиц и нулей (1 и 0), затем, данные декодируются и маршрутизируются по сети. Более высокие уровни охватывают запросы, связанные с представлением данных. Условно говоря, более высокие уровни отвечают за сетевые данные с точки зрения пользователя.

Модель OSI была изначально придумана как стандартный подход, архитектура или паттерн, который бы описывал сетевое взаимодействие любого сетевого приложения. Давайте разберемся поподробнее?


#01: Физический (physical) уровень

На первом уровне модели OSI происходит передача физических сигналов (токов, света, радио) от источника к получателю. На этом уровне мы оперируем кабелями, контактами в разъемах, кодированием единиц и нулей, модуляцией и так далее.

Среди технологий, которые живут на первом уровне, можно выделить самый основной стандарт - Ethernet. Он есть сейчас в каждом доме.

Отметим, что в качестве носителя данных могут выступать не только электрические токи. Радиочастоты, световые или инфракрасные волны используются также повсеместно в современных сетях.

Сетевые устройства, которые относят к первому уровню это концентраторы и репитеры – то есть «глупые» железки, которые могут просто работать с физическим сигналом, не вникая в его логику (не декодируя).

#02: Канальный (data Link) уровень

Представьте, мы получили физический сигнал с первого уровня – физического. Это набор напряжений разной амплитуды, волн или радиочастот. При получении, на втором уровне проверяются и исправляются ошибки передачи. На втором уровне мы оперируем понятием «фрейм», или как еще говорят «кадр». Тут появляются первые идентификаторы – MAC – адреса. Они состоят из 48 бит и выглядят примерно так: 00:16:52:00:1f:03.

Канальный уровень сложный. Поэтому, его условно говоря делят на два подуровня: управление логическим каналом (LLC, Logical Link Control) и управление доступом к среде (MAC, Media Access Control).

На этом уровне обитают такие устройства как коммутаторы и мосты. Кстати! Стандарт Ethernet тоже тут. Он уютно расположился на первом и втором (1 и 2) уровнях модели OSI.

#03: Сетевой (network) уровень

Идем вверх! Сетевой уровень вводит термин «маршрутизация» и, соответственно, IP – адрес. Кстати, для преобразования IP – адресов в MAC – адреса и обратно используется протокол ARP .

Именно на этом уровне происходит маршрутизация трафика, как таковая. Если мы хотим попасть на сайт сайт , то мы отправляем , получаем ответ в виде IP – адреса и подставляем его в пакет. Да – да, если на втором уровне мы используем термин фрейм/кадр, как мы говорили ранее, то здесь мы используем пакет.

Из устройств здесь живет его величество маршрутизатор:)

Процесс, когда данные передаются с верхних уровней на нижние называется инкапсуляцией данных, а когда наоборот, наверх, с первого, физического к седьмому, то этот процесс называется декапсуляцией данных
#04: Транспортный (transport) уровень

Транспортный уровень, как можно понять из названия, обеспечивает передачу данных по сети. Здесь две основных рок – звезды – TCP и UDP. Разница в том, что различный транспорт применяется для разной категории трафика. Принцип такой:

  • Трафик чувствителен к потерям - нет проблем, TCP (Transmission Control Protocol)! Он обеспечивает контроль за передачей данных;
  • Немного потеряем – не страшно - по факту, сейчас, когда вы читаете эту статью, пару пакетов могло и потеряться. Но это не чувствуется для вас, как для пользователя. UDP (User Datagram Protocol) вам подойдет. А если бы это была телефония? Потеря пакетов там критична, так как голос в реальном времени начнет попросту «квакать»;
#05: Сеансовый (session) уровень

Попросите любого сетевого инженера объяснить вам сеансовый уровень. Ему будет трудно это сделать, инфа 100%. Дело в том, что в повседневной работе, сетевой инженер взаимодействует с первыми четырьмя уровнями – физическим, канальным, сетевым и транспортным. Остальные, или так называемые «верхние» уровни относятся больше к работе разработчиков софта:) Но мы попробуем!

Сеансовый уровень занимается тем, что управляет соединениями, или попросту говоря, сессиями. Он их разрывает. Помните мем про «НЕ БЫЛО НИ ЕДИНОГО РАЗРЫВА »? Мы помним. Так вот, это пятый уровень постарался:)

#06 Уровень представления (presentation)

На шестом уровне творится преобразование форматов сообщений, такое как кодирование или сжатие. Тут живут JPEG и GIF, например. Так же уровень ответственен за передачу потока на четвертый (транспортный уровень).

#07 Уровень приложения (application)

На седьмом этаже, на самой верхушке айсберга, обитает уровень приложений! Тут находятся сетевые службы, которые позволяют нам, как конечным пользователям, серфить просторы интернета. Гляньте, по какому протоколу у вас открыта наша база знаний? Правильно, HTTPS. Этот парень с седьмого этажа. Еще тут живут простой HTTP, FTP и SMTP.

Полезна ли Вам эта статья?

Пожалуйста, расскажите почему?

Нам жаль, что статья не была полезна для вас:(Пожалуйста, если не затруднит, укажите по какой причине? Мы будем очень благодарны за подробный ответ. Спасибо, что помогаете нам стать лучше!

Случайные статьи

Вверх